3.1 BONDING FORCES AND ENERGY BANDS IN SOLIDS

In Chapter 2 we found that electrons are restricted  to sets of discrete ener-gy levels within  atoms. Large gaps exist in the energy scale in which no en-ergy states are available. In a similar fashion, electrons in solids are restricted to certain  energies and  are  not  allowed  at other energies. The basic  differ-ence between the case of an electron in a solid and that  of an electron in an isolated  atom is that  in the solid the electron  has a range,  or band,  of avail-able  energies. The  discrete  energy  levels  of  the  isolated  atom  spread  into  bands  of  energies  in the  solid  because  in the  solid the  wave  functions  of  electrons in neighboring atoms overlap, and an electron is not necessarily lo-calized at a particular atom. Thus, for example, an electron in the outer  orbit  of one atom  feels  the influence  of neighboring  atoms, and  its overall  wave  function  is altered. Naturally, this influence  affects  the potential energy term and  the boundary  conditions  in the  Schrodinger  equation,  and  we  would  expect to obtain different  energies in the solution. Usually, the influence  of  neighboring atoms on the energy levels  of a particular atom can be treated as a small perturbation, giving rise to shifting and splitting of energy states into energy bands.

3.1.1     Bonding  Forces in  Solids
The interaction  of electrons in neighboring  atoms  of a solid serves the very important  function  of holding the crystal together. For example, alkali halides such as NaCl are typified by ionic bonding.  In the NaCl lattice, each Na atom
is surrounded  by  six nearest  neighbor  CI atoms, and  vice versa. Four  of  the  nearest neighbors are evident in the two-dimensional representation  shown  in Fig. 3-la.The  electronic structure  of Na (Z  =  11) is [Ne] 3s1, and CI (Z  =  17)  has the structure  [Ne]3s23p5. In the lattice each Na atom  gives up its outer  3s  electron to a CI atom, so that the crystal is made up  of ions with the  electronic  structures  of the  inert  atoms Ne  and Ar  (Ar  has the  electronic  structure  [Ne]3s23/?6). However, the ions have net electric charges after  the electron ex-change. The Na+  ion has  a net  positive  charge, having  lost  an  electron,  and  the  Cl~ ion has  a net negative  charge, having gained  an  electron.  Each  Na+  ion  exerts  an  electrostatic  attractive  force  upon  its  six  Cl~  neighbors, and  vice  versa. These  coulombic  forces  pull  the  lattice  together  until  a balance  is reached  with  repulsive  forces. A  reasonably  accurate  cal-culation  of the  atomic spacing can be made  by considering the ions  as hard spheres being attracted  together  (Example  1-1).  An  important  observation  in  the  NaCl  structure  is that  all  electrons  are  tightly  bound  to  atoms. Once  the  electron  exchanges  have  been  made  between the Na  and  CI atoms to form  the Na+  and  CI" ions, the outer  orbits  of  all  atoms  are  completely  filled.  Since  the  ions have  the  closed-shell  con-figurations  of the inert atoms Ne and Ar, there are no loosely bound  electrons  to  participate  in current flow; as  a result, NaCl is a good  insulator.  In  a metal atom  the outer  electronic shell is only partially  filled, usual-ly by no more than three electrons. We have already noted that the alkali met-als (e.g., Na) have only one electron in the outer  orbit. This electron  is loosely bound  and  is given  up  easily  in  ion  formation.  This  accounts  for  the  great  chemical  activity  in the  alkali metals, as  well  as  for  their  high  electrical  con-ductivity. In the metal the outer electron  of each alkali atom is contributed to the  crystal as  a whole, so that  the  solid  is made  up  of ions  with  closed  shells  immersed  in  a  sea  of  free  electrons. The  forces  holding the  lattice  together  arise from  an interaction between  the positive ion cores and the  surrounding  free  electrons. This is one type  of metallic  bonding.  Obviously, there are com-plicated  differences  in the bonding forces for various metals, as evidenced  by  the wide range  of melting temperatures  (234 K for  Hg, 3643 K for W). Howev-er, the metals have the sea of electrons in common, and these electrons are  free  to move about the crystal under the influence  of an electric  field.  A  third  type  of  bonding  is exhibited  by  the  diamond  lattice  semicon-ductors. We  recall  that  each  atom  in the  Ge, Si, or  C diamond  lattice  is sur-rounded  by four  nearest neighbors, each with  four electrons  in the outer  orbit.  In these crystals each atom shares its valence electrons with its four  neighbors  (Fig. 3-lb).  Bonding between  nearest  neighbor  atoms is illustrated  in the di-amond  lattice diagram  of Fig. 1-9. The bonding  forces  arise  from  a quantum mechanical interaction between  the shared  electrons. This  is known as  cova-lent  bonding;  each  electron  pair  constitutes  a  covalent  bond.  In  the  sharing  process it is no  longer relevant  to  ask  which electron  belongs to  a  particular  atom—both  belong to the bond. The two electrons  are indistinguishable, ex-cept that they must have opposite spin to satisfy  the Pauli exclusion  principle.  Covalent bonding is also found  in certain molecules, such  as H2.
As  in the  case  of the  ionic crystals, no  free  electrons  are  available  to  the lattice in the covalent  diamond structure  of Fig. 3-lb. By this reasoning Ge and Si should also be insulators. However, we have pictured  an idealized lattice  at 0 K in this figure. As we shall see in subsequent  sections, an elec-tron can be thermally or optically excited out  of a covalent bond and there-by become free to participate in conduction. This is an important feature of semiconductors. Compound semiconductors such as GaAs have mixed bonding, in which both ionic and covalent bonding forces participate. Some ionic bonding is to be  expected  in a  crystal  such  as  GaAs  because  of the  difference  in place-ment  of the Ga  and As atoms  in the periodic table. The ionic character  of  the bonding becomes more important  as the atoms of the compound become further  separated in the periodic table, as in the II-VI compounds. Such elec-tronic structure, and specifically the idea that the outermost  valence shell is complete if it has a stable set  of  eight  electrons  (Ne, Ar, Kr), is the  basis  of  most  of chemistry  and many of the semiconducting properties.

Comments